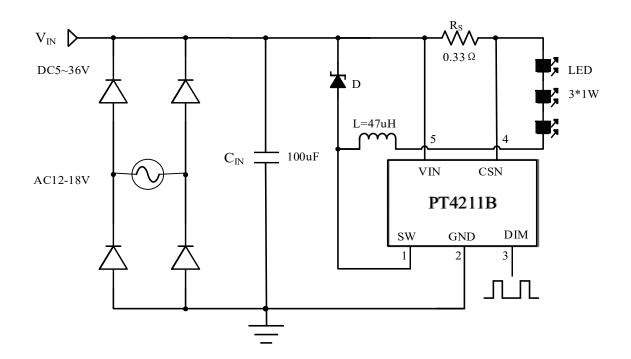


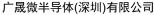
GENERAL DESCRIPTION

The PT4211B is a continuous conduction mode inductive step-down converter, designed for driving single or multiple series connected LEDs from a voltage source higher than the LED voltage. The device operates from an input supply between 5V and 36V and provides an externally adjustable output current of up to 600mA.

The PT4211B includes the output switch and a high-side output current sensing circuit, which uses an external resistor to set the nominal average output current, and a dedicated DIM input accepts a wide range of pulsed dimming. Applying a low voltage to the DIM pin turns the output off and switches the device into a low current standby state. Built-in Over Temperature Protection protects the device from over temperature damage.

The PT4211B is available in SOT23-5 package.

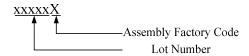

FEATURES

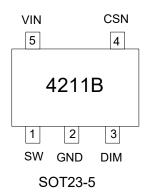

- Simple low parts count
- Wide input voltage range: 5V to 36V
- Up to 600mA output current
- Single pin on/off and brightness control using DC voltage or PWM
- 3% output current accuracy.
- Typical 3% output current accuracy
- Inherent open-circuit LED protection
- High efficiency (up to 93%)
- Adjustable Constant LED Current
- High-Side Current Sense
- Over Temperature Protection

APPLICATIONS

- Low voltage halogen replacement LEDs
- Automotive lighting
- LED back-up lighting
- Illuminated signs

TYPICAL APPLICATION CIRCUIT


24-Hour Hotline: +886-18018703531


ORDERING INFORMATION

PACKAGE	ORDERING PART NUMBER	TRANSPORT MEDIA	MARKING
SOT23-5	PT4211BE23E	Tape and Reel 3000 units	4211B

Note:

PIN ASSIGNMENT

PIN DESCRIPTIONS

PIN No.	PIN NAMES	DESCRIPTION	
1	SW	Switch Output. SW is the drain of the internal N-Ch MOSFET switch.	
2	GND	Signal and power ground. Connect directly to ground plane.	
3	DIM	Logic level dimming input. Drive DIM low to turn off the current regulator. Drive DIM high to enable the current regulator.	
4	CSN	Current sense input	
5	VIN	Input Supply Pin. Must be locally bypassed.	

Add WeChat

ABSOLUTE MAXIMUM RATINGS (Note1)

SYMBOL	PARAMETER	VALUE	UNIT
V _{IN}	Supply Voltage	-0.3~40	V
SW	Drain of the internal power switch	-0.3~40	V
CSN	Current sense input (Respect to VIN)	+0.3~(-6.0)	V
DIM	Logic level dimming input	-0.3~6	V
Isw	Switch output current	800	mA
P _{DMAX}	Power Dissipation (Note 2)	260	mW
P _{TR}	Thermal Resistance, SOT23-5 θ _{JA}	250	°C /W
TJ	Operation Junction Temperature Range	-40 to 150	°C
T _{STG}	Storage Temperature	-55 to 150	°C
	ESD	2	kV

RECOMMENDED OPERATING RANGE

SYMBOL	PARAMETER	VALUE	UNIT
lout	Output Current	≤600	mA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Range indicates conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Range. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower.

VERSION: PT4211B EN Rev CH 1.1

ELECTRICAL CHARACTERISTICS (Note 3, 4)

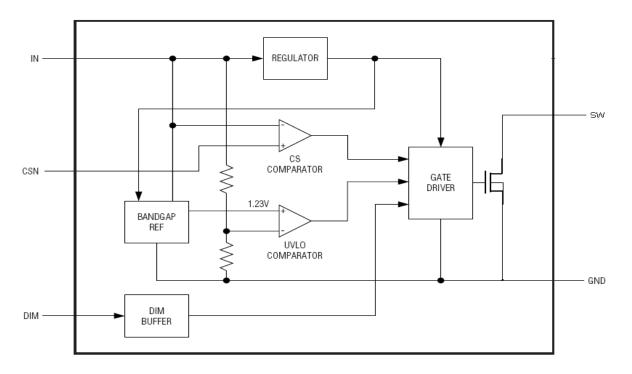
The following specifications apply for V_{IN}=12V, T_A=25 °C, unless specified otherwise.

SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
Input Volta	age					
VIN	VIN supply voltage		5		36	V
loff	Off state operating current	V _{DIM} <0.25V		95		μA
operating	frequency				I	,I
Fsw	Maximum operating frequency				1	MHz
Current se	nse					
Vcsn	Current sense Reference voltage	V _{IN} - V _{CSN}	194	200	206	mV
V _{CSN_hys}	Current sense Hysteretic voltage			±15		%
Icsn	CSN pin bias current	V _{IN} -V _{CSN} =50mV		8		μA
DIM input						
V_{DIM}	DIM pin floating voltage	DIM floating		4.5		V
V _{DIM_PWMH}	DIM input logic high		2.5			V
V _{DIM_PWML}	DIM input logic low				0.2	V
V _{DIM_DC}	DC brightness control		0.5		2.5	V
f _{DIM} (note 5)	Maximum dimming frequency	f _{OSC} =500kHz			20	kHz
R _{DIM}	DIM pin internal pull up resistance			200		ΚΩ
I _{DIM_L}	DIM pin short to GND current	V _{DIM} = 0		22		uA
Output Sw	ritch	,		1	1	.1
Rsw	SW on stage resistance			0.5		Ω
SWmean	SW maximum current				600	mA
ILEAK	SW leakage current	Vsw=36V, SW off		0.5	5	μΑ
Thermal S	hutdown			1	1	
Tsc	Thermal Regulation Temperature			135		$^{\circ}$ C

Note 3: Typical parameters are measured at 25°C and represent the parametric norm.

Note 4: Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

Note 5: The maximum dimming frequency is limited by operating frequency because operating frequency varies with supply voltage, output voltage and inductor selection, to achieve the best dimming linearity, the dimming frequency is recommended to limited less than 1% of operating frequency.


广晟微半导体(深圳)有限公司

- PAGE 4 - VERSION: PT4211B_EN Rev CH_1.1

SIMPLIFIED BLOCK DIAGRAM

OPERATION DESCRIPTION

The device, in conjunction with the coil (L) and current sense resistor (Rs), forms a self oscillating continuous-mode buck converter.

When input voltage VIN is first applied, the initial current in L and Rs is zero and there is no output from the current sense circuit. Under this condition, the output of CS comparator is high. This turns on the internal switch and switches the SW pin low, causing current to flow from VIN to ground, via Rs, L and the LED(s). The current rises at a rate determined by VIN and L to produce a voltage ramp (V_{CSN}) across Rs. When $(V_{IN}-V_{CSN}) > 230 \text{mV}$, the output of CS comparator switches low and the switch turns off. The current flowing on the Rs decreases at another rate. When $(V_{IN}-V_{CSN})$ < 170mV, the switch turns on again and the mean current on the LED is determined by

shutdown is nominally IOFF.

100Hz to 20 kHz.

Additionally, to ensure the reliability, the PT4211B is built with an over temperature protection. If the junction temperature exceeds TSC, the device will reduce output current to avoid system cause to damage.

at the DIM input. A logic level below VDIM PWML at

DIM forces PT4211B to turn off and the logic level

at DIM higher than V_{DIM PWMH} to turn the device on. The frequency of PWM dimming ranges from

 $I_{OUT} = 0.2 / Rs$.

The PT4211B allows dimming with a PWM signal 广晟微半导体(深圳)有限公司

- PAGE 5 -

VERSION: PT4211B EN Rev CH 1.1

APPLICATION NOTES

Setting nominal average output current with external resistor \mathbf{R}_{s}

The nominal average output current in the LED(s) is determined by the value of the external current sense resistor (R_s) connected between VIN and CSN and is given by:

$$I_{OUT} = 0.2 / Rs$$

This equation is valid when DIM pin is float or applied with a voltage higher than V_{DIM_PWMH} (must be less than 5V). Actually, R_S sets the maximum average current which can be adjusted to a less one by dimming.

Inductor selection

Recommended inductor values for the PT4211B are in the range 47uH to 100uH.

Higher values of inductance are recommended at lower output current in order to minimize errors due to switching delays, which result in increased ripple and lower efficiency. Higher values of inductance also result in a smaller change in output current over the supply voltage range. (See graphs). The inductor should be mounted as close to the device as possible with low resistance connections to the SW and VIN pins.

The chosen coil should have a saturation current higher than the peak output current and a continuous current rating above the required mean output current.

Following table gives the guideline on inductor selection:

Selection.					
Vin	1LED	2LEDs	3LEDs	Saturatio n current	
5V-10V	47uH	68uH		1.3-1.5	
10V-20 V	68uH	68uH	47uH	times of	
20V-36 V	100uH	68uH	47uH	current	

The inductor value should be chosen to maintain operating duty cycle and switch 'on'/'off' times within the specified limits over the supply voltage and load current range.

The following equations can be used as a guide.

SW Switch 'On' time

$$T_{ON} = \frac{L \times \Delta I}{V_{IN} - V_{LED}}$$

SW Switch 'Off' time

$$T_{OFF} = \frac{L \times \Delta I}{V_{LED} + V_{D}}$$

Where:

L the coil inductance (H)

lavg the required LED (A)

current

ΔI the coil peak-peak

(A) {set with 0.3 x

ripple current lavg}

V_{IN} supply voltage

(V)

V_{LED} total LED forward

(V)

voltage

V_D he diode forward

(V)

voltage at the required

load current

Diode selection

For maximum efficiency and performance, the rectifier (D) should be a fast low capacitance Schottky diode with low reverse leakage at the maximum operating voltage and temperature.

They also provide better efficiency than silicon diodes, due to a combination of lower forward voltage and reduced recovery time.

It is important to select parts with a peak current rating above the peak coil current and a continuous current rating higher than the maximum output load current. It is very important to consider the reverse leakage of the diode when operating above 85°C. Excess leakage will increase the power dissipation in the device and if close to the load may create a thermal runaway condition.

The higher forward voltage and overshoot due to reverse recovery time in silicon diodes will increase the peak voltage on the SW output. If a silicon diode is used, care should be taken to ensure that the total voltage appearing on the SW pin including supply ripple, does not exceed the specified maximum value.

广晟微半导体(深圳)有限公司

- PAGE 6 - VERSION: PT4211B EN Rev CH 1.1

Thermal shutdown protection

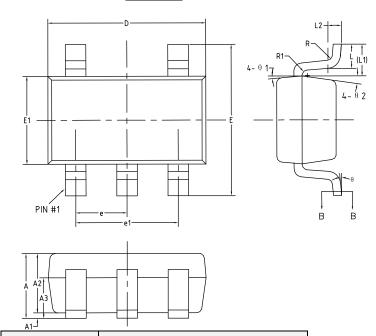
To ensure the reliability, the PT4211B is built with an over temperature protection. When junction temperature excess 135°C, the device will reduce output current to avoid system cause to damage.

Layout considerations

Careful PCB layout is critical to achieve low switching losses and stable operation. Use a multilayer board whenever possible for better noise immunity. Minimize ground noise by connecting high-current ground returns, the input bypass-capacitor ground lead, and the output-filter ground lead to a single point (star ground configuration).

SW pin

The SW pin of the device is a fast switching node, so PCB tracks should be kept as short as possible. To minimize ground 'bounce', the ground pin of the device should be soldered directly to the ground plane.


Coil and decoupling capacitors and current sense resistor

VERSION: PT4211B EN Rev CH 1.1

PACKAGE INFORMATION

SOT23-5

CVMDOL	MILLIMETERS			
SYMBOL	MIN	TYP	MAX	
Α	-	-	1.25	
A1	0	-	0.15	
A2	1.00	1.10	1.20	
A3	0.60	0.65	0.70	
b	0.36	-	0.50	
b1	0.36	0.38	0.45	
С	0.14	-	0.20	
c1	0.14	0.15	0.16	
D	2.826	2.926	3.026	
E	2.60	2.80	3.00	
E1	1.526	1.626	1.726	
е		0.95BSC		
e1		1.90BSC		
L	0.35	0.45	0.60	
L1	0.59REF			
L2	0.25BSC			
R	0.10	-	-	
R1	0.10	-	0.25	
θ	0°	-	8°	
θ1	3°	5°	7°	
θ2	6°	8°	10°	

CRM ICBG (Wuxi) Co., Ltd.

Headquarters address: 180-6 Linghu Avenue, Wuxi, Jiangsu, CHINA. Tel: 0510-85810118

The Branch Address of Shanghai: No. 12, Lane 299, Wenshui Road, Shibei Zhihuiyuan, Jing 'an District,

Shanghai. Tel: 021-60738989

The Branch Address of Shenzhen: T2 Building, 29/F, Qianhai Life Insurance Financial Center, No. 1100,

Xingye Road, Baoan District, Shenzhen City, Guangdong Province Tel: 0755-33088860

Note:

Please read the following information carefully before using CRM's products. And please often contact the relevant departments of CRM to obtain the latest information, because CRM's products are constantly updated and improved. The information in this document is subject to change without notice.

This information is for reference only, and CRM will not be responsible for any losses arising therefrom. CRM does not assume any responsibility for any infringement of third party patents or other rights caused during use.

CRM ICBG (WUXI) CO., LTD. has the right to make corrections, enhancements, improvements, and other changes to its semiconductor products, services and to discontinue any product or service. Buyers should obtain the latest relevant information before placing orders and verifying that such information is up-to-date and complete. All semiconductor products (also referred to herein as "components") are sold subject to CRM ICBG (WUXI) CO., LTD.' s terms, and conditions of sale supplied at the time of order acknowledgment.

CRM ICBG (WUXI) CO., LTD. guarantees that the performance of its components to the specifications applicable at the time of sale, by the warranty in CRM ICBG (WUXI) CO., LTD.'s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent CRM ICBG (WUXI) CO., LTD. deems necessary to support this warranty. Except that mandated by applicable law, testing of all parameters of each component is not necessary.

CRM ICBG (WUXI) CO., LTD. assumes no obligation for application assistance or the design of buyers' products. Buyers shall be responsible for their products and applications using CRM ICBG (WUXI) CO., LTD. components. To minimize the risks associated with buyers' products and applications, Buyers should provide adequate design and operational safeguard.

The products of CRM ICBG (WUXI) CO., LTD. have not obtained the licenses for using in FDA Class III (or similar life-critical medical equipment) unless authorized officers of all parties have come to a particular agreement specially on governing the use in this class. Only those CRM ICBG (WUXI) CO., LTD. components which CRM ICBG (WUXI) CO., LTD. has specifically designated as military-grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyers acknowledge and agree that any military or aerospace use of CRM ICBG (WUXI) CO., LTD. components that have not been so designated is solely at the Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Unless CRM ICBG (WUXI) CO., LTD. has specifically designated certain components which meet IATF16949 requirements, mainly for automotive use, CRM ICBG (WUXI) CO., LTD. will not be responsible for any failure of such components to meet such requirements.

